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Abstract
We outline a remarkably efficient method for generating solutions to quantum
anharmonic oscillators with an x2M potential. We solve the Schrödinger
equation in terms of a free parameter which is then tuned to give the correct
boundary condition by generating a power series expansion of the wavefunction
in x and applying a modified Borel resummation technique to obtain the large
x behaviour. The process allows us to calculate energy eigenvalues to an
arbitrary level of accuracy. High degrees of precision are achieved even with
modest computing power. Our technique extends to all levels of excitation and
produces the correct solution to the double well oscillators even though they
are dominated by non-perturbative effects.

PACS number: 02.60.−x

1. Introduction

Harmonic oscillators are a corner-stone of many branches of physics. Consequently, a large
variety of methods have been used to study the eigenvalue properties of anharmonic oscillators
(see [1, 2] and references therein for a general review). High levels of accuracy have always
been difficult to achieve due to slow convergence or often non-convergence of asymptotic
perturbative expansions. For example, the Bender–Wu [3] expansion of the quartic anharmonic
oscillator ground state energy eigenvalue in positive powers of the coupling is known to be
divergent for all non-zero values of the coupling. Methods of resumming asymptotic series
[4] have been applied to generate approximate eigenvalues [5, 6]. In addition, some types
of anharmonic oscillators are dominated by non-perturbative effects such as instantons [7].
More innovative approaches have been required to produce a greater level of accuracy and
account for these non-perturbative effects [8–11]. In addition to the numerical approaches,
some progress has been made in determining the analytic structure of certain anharmonic
oscillators [12, 13]. In particular, [13] outlines a type of anharmonic oscillator which is quasi
exactly solvable with certain parts of the spectrum known exactly.
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These problems extend into the quantum field theory. For example, the renormalization
group implies that the energy eigenvalues in the Yang–Mills theory cannot be solved
perturbatively. Strongly coupled theories in particular are hard to deal with by using traditional
techniques. Anharmonic oscillators are therefore of great interest because of their applicability
in many branches of physics and because their mathematical properties often mirror those of
other physical systems.

We will outline a method of constructing solutions to the Schrödinger equation for an
anharmonic oscillator of the form

−d2�

dx2
+ ρx2� + gx2M� = E�, (1)

lim
|x|→∞

� = 0, (2)

where x is real and units are defined to absorb Plank’s constant and mass such that h̄ = 2m = 1.
We do this initially by constructing a solution to the differential equation (1) in terms of one
free parameter for a given ρ and g. We then vary this parameter until we observe the correct
large x behaviour determined by the boundary condition (2) using a contour integral method of
resummation. We find the energy eigenvalues with an arbitrary level of accuracy. The process
is easily automated to produce very high levels of precision even with modest computing
power.

In section 2, we will outline the basic method for the ground state of the quartic oscillator,
M = 2. In section 3, we will extend the method to produce excited wavefunctions and energy
eigenvalues. Finally, in section 4, we will show how this method can be extended to general
anharmonic oscillators with an x2M potential as in (1).

2. Tuning for large x

In this section, we will find the ground state wavefunction and energy eigenvalues
corresponding to the quartic anharmonic oscillator obtained from (1) by setting M = 2. Since
the ground state has no nodes, we will construct the wavefunction in the form � = exp(W).
We will make an even-powered x expansion W = ∑∞

n=1 anx
2n since both the potential term and

boundary condition are even. The coefficients an are then determined in terms of the parameters
ρ, g and E via (1). Having chosen two of these parameters, the third must be determined
by ensuring the correct boundary condition (2), which implies that W ∼ −√

gx3/3 for large
positive real x. Since our expansion for W in positive powers of x is only valid for small x, we
shall resum by analytically continuing x into the complex s ≡ 1/x-plane and using Cauchy’s
theorem to examine the large x behaviour. We define

L(λ) = 1

2π i

1

λ3

∫
C

ds
eλs

s
W(s), (3)

where C is a large circular contour about the origin in the complex s-plane. The large x
asymptotic behaviour implied by the differential equation requires W(s) to have a third-order
pole at the origin. This contributes a term −√

g/18 to L(λ) by Cauchy’s theorem. When the
boundary condition is satisfied, we find that any remaining singularities of W(s) lie to the left of
the imaginary axis. The contribution from these is exponentially suppressed in L(λ) so that in
the large λ limit only the singular contribution at the origin remains, limλ→∞ L(λ) = −√

g/18.
In reality, (3) is not calculated exactly but by truncating W at some order x2N . Thus,

LN(λ) ≡ 1

2π i

1

λ3

∫
C

ds
eλs

s

N∑
n=1

an

s2n
=

N∑
n=1

an

λ2n−3

�(2n + 1)
≈ L(λ), (4)
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where in the evaluation of the contour integral we used the identity
∫
C

ds s−n exp(λs) =
2π iλn−1/�(n) for n < 0 [14].

We proceed by finding our x expansion in W and look for the correct behaviour in LN(λ).
We will consider solutions with a fixed coupling g = 1 and look at the relationship between
E and ρ. We do this without loss of generality since our parameters are related by scaling
properties of the Hamiltonian, as first noted by Symanzik and discussed in [15]. To help us
we will scale x → cx (c ∈ R) in the differential equation (1) in such a way that we are free to
place a restriction on our expansion for W . We can choose k ≡ a1/a2 at least up to a sign, say
k = ±4. Now substituting W into our scaled differential equation and comparing coefficients
of x2n:

Ec2 = −2a1, (5)

ρc4 = 4a2
1 + 12a2, (6)

c6 = 16a1a2 + 30a3. (7)

We eliminate c to find expressions for E and ρ in terms of a2 and a3:

E = −2ka2(
16ka2

2 + 30a3
) 1

3

, (8)

ρ = 4k2a2
2 + 12a2(

16ka2
2 + 30a3

) 2
3

, (9)

whilst for n � 3 we have

an+1 = −
(

n∑
m=1

4m(n − m + 1)aman−m+1

)/
(2(n + 1)(2n + 1)), (10)

giving an+1 in terms of a2 and a3.
Our goal is now to determine a3 for a given a2 in such a way that the boundary condition

is satisfied. We do this by tuning a3 until the correct large λ behaviour is observed in LN(λ).
To illustrate the process, we shall choose positive k, k = 4 and a2 = −3/16. With this sign
choice and a2 we get a zero ρ term. We choose a fairly modest N initially, guess a value of a3

and then plot LN(λ) and LN−1(λ). LN and LN−1 only provide a good approximation to L(λ)

for values of λ up to the point where they appreciably diverge from each other. Therefore, we
restrict our consideration of λ to within this range.

With a3 too small we encounter a curve rapidly decreasing such as in figure 1(a). With a3

too large we encounter a curve rapidly increasing as in figure 1(c). An optimal value of a3 will
give a curve flattening as we increase λ as in figure 1(b). We tune a3 until we achieve this. As
a3 gets closer to its correct value, the exponential behaviour in figures 1(a) and (c) becomes
less pronounced within our range of acceptable λ and flatness becomes a less well-defined
concept. This determines our level of accuracy for determining a3. To improve our accuracy
we must increase N in order to consider larger λ. As we consider these larger λ, we again
encounter the exponentially increasing/decreasing behaviour which enables us to further tune
a3 to a greater accuracy.

We completed this procedure in this zero ρ case and determined a3 to six significant
figures with N = 20. With N = 100 we tune a3 to 30 significant figures, and with N = 300
we get

a3 = 0.019 360 437 202 459 504 192 019 975 317 212 335 964 255 895 815 493 975 700 276 151 52,

(11)
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(a) (b) (c)

Figure 1. LN(λ) with N = 19, 20 for a2 = −3/16: (a) a3 = 0.015—too small;
(b) a3 = 0.019 3604—optimal; (c) a3 = 0.025—too big.

(a) (b) (c)

Figure 2. (a) a3 as a function of a2; (b) ρ as a function of a2; (c) E as a function of a2.

to 65 significant figures and we find L(λ) ≈ −0.093 4774 which is remarkably close to the
predicted value of −0.093 4723. This calculated figure of a3 is accurate to the stated number
of digits, i.e. 65 significant figures and in agreement with the existing literature [8–11] at least
up to 10–16 significant figures they quote. With a3 determined, we calculate the ground state
energy via (8):

E0 = 1.060 362 090 484 182 899 647 046 016 692 663 545 515 208 728 528 977 933 216 245 2417,

(12)

again quoted accurately up to 65 significant figures.
Calculating large number of terms is easy, even with modest computing power, given the

linear nature of the calculations. The tuning process is easily automated.
We repeat this for various a2 and plot the results in figures 2 and 3. The two branches

correspond to differing sign choices of k. With k = +4, we found solutions corresponding to
positive energy. The solutions have a positive ρ term for a2 < −3/16 and a negative term for
−3/16 < a2 � 0. With k = −4 and 0 > a2 > −3/16, we found negative energy eigenvalues
corresponding to ρ < 0.

We also verify that non-zero ρ terms correspond to the literature by, for example,
calculating the ρ = −1, g = 1 energy eigenvalue. In doing so we must tune a2 with
k = +4 to obtain the correct ρ term. We found that a2 = 0.004 048 768 355 681 543 705
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Figure 3. E as a function of ρ.

approximated ρ = −1 with an error in the order of 10−16. This value of a2 is within ±5−21

of the correct a2 required to evaluate ρ exactly. The energy eigenvalue produced from this
approximate value of a2 gave us the same eigenvalue as stated in the previous literature to
within 16 significant figures available for comparison. This is an example of an eigenvalue
where instanton effects would normally dominate and perturbative techniques in h̄ or g would
fail.

We now explain why this method of tuning is so sensitive. With M = 2, the differential
equation (1) without the boundary condition (2) in general has an asymptotic large positive x
solution of the form

�l = exp

(
−

√
g

3
x3

)
+ A exp

(√
g

3
x3

)
. (13)

For A < 0, �l has zeros along the real x-axis however for A > 0, �l has zeros in the complex
x-plane of the real axis. Our boundary condition (2) requires us to take A = 0 in which case
�l has no zeros. We note that for A �= 0, log �l will have a pole (possibly part of a cut).
Such a pole contribution in the right-half x-plane would spoil our resummation of the large
x behaviour. We have numerically determined the location of zeros in our wavefunctions
for varying a3 and shown that they numerically approximate the location of the zeros in our
asymptotic large x solution for varying A. Thus, varying a3 corresponds to varying A in (13).
The presence of these poles is responsible for the rapidly increasing/decreasing behaviour for
values of a3 on either side of the correct one due to the exponential factor in (3). It is this
behaviour that allows us to select the correct value of a3 to any specified level of accuracy.

3. Excited states

We now construct the excited states and energy eigenvalues of the quartic anharmonic
oscillator. First, we write the qth excited state as �q = Pq�0, where the energy is E = Eq +E0

and �0 is the ground state obtained in the previous section. For q odd Pq is odd and for q even
Pq is even. We therefore expand P = ∑∞

n=0 cnx
n and sum only over even or odd values of n

as appropriate. We set either c0 or c1 to unity as a choice of normalization. The remaining
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cn and Eq are then solved for using a recurrence relation in terms of either c2 or c3. This is
easily obtained from our new differential equation which comes from substituting �q into (1)
to obtain

d2P

dx2
+ 2

dW

dx

dPq

dx
+ EqPq = 0. (14)

This differential equation has two types of large x solution. Either

P ∼ exp

(
− Eq

2
√

gx

)
or P ∼ exp (2

√
gx3). (15)

For the correct boundary condition (2), we must choose the first type of solution. We therefore
construct

TN(λ) ≡ 1

2π i

∫
C

ds
eλs

s

N∑
n=0

cn

s2nα
=

N∑
n=0

cn

λ2nα

�(2nα + 1)
(16)

and look for a flat curve as we tune c2 or c3. We have introduced an additional parameter
α by substituting s → sα in P(s) since we find that P(s) has a more limited region of
analyticity than W(s) when the boundary condition is satisfied. Here, we only assume that
P(s) is analytic in some wedge-shaped region radiating from the origin and containing the
real axis. Singularities outside of this region of analyticity are observed in TN(λ) in the form
of oscillations. They can however be rotated in the complex s-plane so that they lie to the left
of the imaginary axis by reducing the parameter α < 1. Having done this the singularities
become exponentially suppressed.

We illustrate the process in the zero ρ case for the odd eigenfunctions. There will be
multiple values of τ ≡ −c3 that correspond to different levels of odd excitation. Let us label
these τn in such a way that τn+1 > τn. With τ < τ1 we obtain a rapidly increasing curve
however with τ1 < τ < τ2 we get a rapidly decreasing curve (figure 4). We follow our
tuning procedure in the same manner as for the ground state however this time we do not
encounter a flat curve but oscillations. These result from a pole or cut outside of our region of
analyticity. We could however take a smaller α to recover a flat curve and proceed with our
tuning procedure. For τ = τ1, we found α = 0.6 sufficient to achieve this.

We can produce the full spectrum of eigenvalues by continuing to vary τ . We find that
as τ passes through a value τn we switch from the rapidly growing to rapidly decreasing
behaviour. With τ3 > τ > τ2, for example, we switch back to the rapidly increasing
curve. This alternating behaviour continues with higher excitations as illustrated in figure 4.
Exactly the same procedure works for even excitations but we vary c2 instead of c3. Having
found an eigenstate through this method, we cannot immediately tell which energy level it
corresponds to. To do this, we could plot the prefactor using a similar contour integral method
of resummation. We then count the number of nodes. We did this for some of the lower
excitations. We calculated excited states up to q = 39 with g = 1 and again found an exact
agreement to the quoted level of accuracy in the previous literature [8–11]. We give some of
these eigenvalues in the appendix.

Whilst we cannot attribute the rapidly increasing/decreasing behaviour of TN(λ) to zeros
in Pq , we believe that a similar effect is encountered this time due to the large x behaviour.
There were two types of the large x behaviour (15) that we were able to derive from the
differential equation (14). We chose the first in order to satisfy our boundary condition (2).
When c2 or c3 do not correspond to an energy eigenstate, we believe that we are obtaining the
second type of solution. We note that such large x behaviour would give an additional pole
contribution to T (λ). Again our resummation is conveniently spoilt. We have numerically
verified this result by plotting P for large real values of x for a range of c3 by exploiting
Cauchy’s theorem.
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(a) (b) (c)

(d) (e)

Figure 4. T (λ) with an odd prefactor: (a) τ = 0.1; (b) τ ≈ τ1 ≈ 0.145 84; (c) τ = 0.2;
(d) τ ≈ τ2 ≈ 1.995 46; (e) τ = 2.

4. Other potentials

In this section, we consider other values of M in ((1)). The large positive x behaviour is now
W ∼ −√

gxM+1/(M + 1). We should therefore redefine our LN(λ) for a general x2M potential

LM
N (λ) ≡ 1

2π i

1

λ(M+1)α

∫
C

ds
eλs

s

N∑
n=1

an

s2nα
=

N∑
n=1

an

λ(2n−M−1)α

�(2nα + 1)
, (17)

where again we introduce the parameter α since for M > 2 we find that W(s) is analytic
within a more limited region. Our prescription of reducing α < 1 will therefore be required
to rotate these singularities to the left of the imaginary axis where they become exponentially
suppressed.

Our an are again determined via the differential equation in the same manner as before.
We apply the rescaling x → cx so that we can fix a1/a2 = ±4 as before. We pick a value of
a2 and use (10) to solve for all of the coefficients in terms of an+1. This relation now holds for
n � 2 but not n = M . In its place we have

c6g = 2(M + 1)(2M + 1)aM+1 +
M∑

n=1

4n(M − n + 1)aMan−M+1 (18)

which is then substituted into (5) and (6) to give E and ρ.
Our procedure is now the same as for the M = 2 case. We do find however that for

increasing M the region of analyticity becomes smaller and therefore an increasingly small α

is required. We performed this procedure with M ranging from 2 to 50 for g = 1 and found
results matching those in [9] for M = 2, 3, 4. Having determined the ground state, we have



10298 D Leonard and P Mansfield

applied the technique outlined in section 3 to obtain some excited energy eigenvalues. Again,
these are in complete agreement with [9].

5. Summary

We have developed a method for calculating the relationship between the physical parameters
of a general x2M anharmonic oscillator. The equations we solve are linear and the process
of refining our estimate is easily automated. We can calculate the physical quantities and
wavefunctions for all levels of excitation to an arbitrary level of accuracy with an error that
can be reduced by increasing the number of terms in our expansion. Using modest computing
power, we have demonstrated that high degrees of accuracy can be obtained very quickly. Our
technique overcomes some of the deficiencies of traditional perturbative techniques which rely
on coupling constant expansions and so do not immediately reveal the effects of instantons, for
example. Finally, we note that the analytic continuation of quantum–mechanical systems into
complex configuration space has recently been studied in PT -symmetric quantum mechanics
(see [16] and references therein). We believe that understanding the properties of Hermitian
theories in the complex plane is still of great interest.

Finally, we note that in the case of the quasi exactly solvable solutions studied in [13] the
expansion of both W and P in powers of x becomes truncated. In this type of solution, it is
more obvious that the correct boundary condition is satisfied by the large x behaviour. This is
trivially reflected in our resummation technique. We have numerically verified that the results
of [13] are correctly reproduced for some specific choices of an x6 polynomial potential.

Appendix

Below we give some of the excited energy eigenvalues for the ρ = 0 quartic (M = 2)

anharmonic oscillator. The results represent accurate eigenvalues rounded to 48 significant
figures.

q E0 + E1

1 3.799 673 029 801 394 168 783 094 188 512 568 957 766 065 467 33
2 7.455 697 937 986 738 392 156 591 347 185 767 488 137 819 536 750
3 11.644 745 511 378 162 020 850 373 281 370 936 436 550 872 1620
4 16.261 826 018 850 225 937 894 954 430 384 613 534 244 586 5045
5 21.238 372 918 235 940 024 149 711 113 588 636 376 704 832 0597

20 122.604 639 000 999 455 020 762 971 417 615 181 874 976 633 223
38 284.068 590 581 400 743 150 496 281 208 125 064 777 084 713 267
39 293.948 458 266 006 085 433 669 997 483 521 626 303 445 899 275
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